Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cochrane Database Syst Rev ; 1: CD013295, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226724

RESUMEN

BACKGROUND: Hip and knee replacement surgery is a well-established means of improving quality of life, but is associated with a significant risk of bleeding. One-third of people are estimated to be anaemic before hip or knee replacement surgery; coupled with the blood lost during surgery, up to 90% of individuals are anaemic postoperatively. As a result, people undergoing orthopaedic surgery receive 3.9% of all packed red blood cell transfusions in the UK. Bleeding and the need for allogeneic blood transfusions has been shown to increase the risk of surgical site infection and mortality, and is associated with an increased duration of hospital stay and costs associated with surgery. Reducing blood loss during surgery may reduce the risk of allogeneic blood transfusion, reduce costs and improve outcomes following surgery. Several pharmacological interventions are available and currently employed as part of routine clinical care. OBJECTIVES: To determine the relative efficacy of pharmacological interventions for preventing blood loss in elective primary or revision hip or knee replacement, and to identify optimal administration of interventions regarding timing, dose and route, using network meta-analysis (NMA) methodology. SEARCH METHODS: We searched the following databases for randomised controlled trials (RCTs) and systematic reviews, from inception to 18 October 2022: CENTRAL (the Cochrane Library), MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCOhost), Transfusion Evidence Library (Evidentia), ClinicalTrials.gov and WHO International Clinical Trials Registry Platform (ICTRP). SELECTION CRITERIA: We included RCTs of people undergoing elective hip or knee surgery only. We excluded non-elective or emergency procedures, and studies published since 2010 that had not been prospectively registered (Cochrane Injuries policy). There were no restrictions on gender, ethnicity or age (adults only). We excluded studies that used standard of care as the comparator. Eligible interventions included: antifibrinolytics (tranexamic acid (TXA), aprotinin, epsilon-aminocaproic acid (EACA)), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants and non-fibrin sealants. DATA COLLECTION AND ANALYSIS: We performed the review according to standard Cochrane methodology. Two authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using CINeMA. We presented direct (pairwise) results using RevMan Web and performed the NMA using BUGSnet. We were interested in the following primary outcomes: need for allogenic blood transfusion (up to 30 days) and all-cause mortality (deaths occurring up to 30 days after the operation), and the following secondary outcomes: mean number of transfusion episodes per person (up to 30 days), re-operation due to bleeding (within seven days), length of hospital stay and adverse events related to the intervention received. MAIN RESULTS: We included a total of 102 studies. Twelve studies did not report the number of included participants; the other 90 studies included 8418 participants. Trials included more women (64%) than men (36%). In the NMA for allogeneic blood transfusion, we included 47 studies (4398 participants). Most studies examined TXA (58 arms, 56%). We found that TXA, given intra-articularly and orally at a total dose of greater than 3 g pre-incision, intraoperatively and postoperatively, ranked the highest, with an anticipated absolute effect of 147 fewer blood transfusions per 1000 people (150 fewer to 104 fewer) (53% chance of ranking 1st) within the NMA (risk ratio (RR) 0.02, 95% credible interval (CrI) 0 to 0.31; moderate-certainty evidence). This was followed by TXA given orally at a total dose of 3 g pre-incision and postoperatively (RR 0.06, 95% CrI 0.00 to 1.34; low-certainty evidence) and TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively (RR 0.10, 95% CrI 0.02 to 0.55; low-certainty evidence). Aprotinin (RR 0.59, 95% CrI 0.36 to 0.96; low-certainty evidence), topical fibrin (RR 0.86, CrI 0.25 to 2.93; very low-certainty evidence) and EACA (RR 0.60, 95% CrI 0.29 to 1.27; very low-certainty evidence) were not shown to be as effective compared with TXA at reducing the risk of blood transfusion. We were unable to perform an NMA for our primary outcome all-cause mortality within 30 days of surgery due to the large number of studies with zero events, or because the outcome was not reported. In the NMA for deep vein thrombosis (DVT), we included 19 studies (2395 participants). Most studies examined TXA (27 arms, 64%). No studies assessed desmopressin, EACA or topical fibrin. We found that TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively ranked the highest, with an anticipated absolute effect of 67 fewer DVTs per 1000 people (67 fewer to 34 more) (26% chance of ranking first) within the NMA (RR 0.16, 95% CrI 0.02 to 1.43; low-certainty evidence). This was followed by TXA given intravenously and intra-articularly at a total dose of 2 g pre-incision and intraoperatively (RR 0.21, 95% CrI 0.00 to 9.12; low-certainty evidence) and TXA given intravenously and intra-articularly, total dose greater than 3 g pre-incision, intraoperatively and postoperatively (RR 0.13, 95% CrI 0.01 to 3.11; low-certainty evidence). Aprotinin was not shown to be as effective compared with TXA (RR 0.67, 95% CrI 0.28 to 1.62; very low-certainty evidence). We were unable to perform an NMA for our secondary outcomes pulmonary embolism, myocardial infarction and CVA (stroke) within 30 days, mean number of transfusion episodes per person (up to 30 days), re-operation due to bleeding (within seven days), or length of hospital stay, due to the large number of studies with zero events, or because the outcome was not reported by enough studies to build a network. There are 30 ongoing trials planning to recruit 3776 participants, the majority examining TXA (26 trials). AUTHORS' CONCLUSIONS: We found that of all the interventions studied, TXA is probably the most effective intervention for preventing bleeding in people undergoing hip or knee replacement surgery. Aprotinin and EACA may not be as effective as TXA at preventing the need for allogeneic blood transfusion. We were not able to draw strong conclusions on the optimal dose, route and timing of administration of TXA. We found that TXA given at higher doses tended to rank higher in the treatment hierarchy, and we also found that it may be more beneficial to use a mixed route of administration (oral and intra-articular, oral and intravenous, or intravenous and intra-articular). Oral administration may be as effective as intravenous administration of TXA. We found little to no evidence of harm associated with higher doses of tranexamic acid in the risk of DVT. However, we are not able to definitively draw these conclusions based on the trials included within this review.


Asunto(s)
Procedimientos Ortopédicos , Accidente Cerebrovascular , Ácido Tranexámico , Masculino , Femenino , Adulto , Humanos , Ácido Tranexámico/uso terapéutico , Aprotinina/uso terapéutico , Desamino Arginina Vasopresina , Metaanálisis en Red , Hemorragia/etiología , Ácido Aminocaproico/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Procedimientos Ortopédicos/efectos adversos , Fibrina
2.
JMIR Form Res ; 7: e49668, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756034

RESUMEN

BACKGROUND: SMS text messages are affordable, scalable, and effective smoking cessation interventions. However, there is little research on SMS text message interventions specifically designed to support people who smoke to quit by switching to vaping. OBJECTIVE: Over 3 phases, with vapers and smokers, we codeveloped and coproduced a mobile phone SMS text message program. The coproduction paradigm allowed us to collaborate with researchers and the community to develop a more relevant, acceptable, and equitable SMS text message program. METHODS: In phase 1, we engaged people who vape via Twitter and received 167 responses to our request to write SMS text messages for people who wish to quit smoking by switching to vaping. We screened, adjusted, refined, and themed the messages, resulting in a set of 95 that were mapped against the Capability, Opportunity, and Motivation-Behavior constructs. In phase 2, we evaluated the 95 messages from phase 1 via a web survey where participants (66/202, 32.7% woman) rated up to 20 messages on 7-point Likert scales on 9 constructs: being understandable, clear, believable, helpful, interesting, inoffensive, positive, and enthusiastic and how happy they would be to receive the messages. In phase 3, we implemented the final set of SMS text messages as part of a larger randomized optimization trial, in which 603 participants (mean age 38.33, SD 12.88 years; n=369, 61.2% woman) received SMS text message support and then rated their usefulness and frequency and provided free-text comments at the 12-week follow-up. RESULTS: For phase 2, means and SDs were calculated for each message across the 9 constructs. Those with means below the neutral anchor of 4 or with unfavorable comments were discussed with vapers and further refined or removed. This resulted in a final set of 78 that were mapped against early, mid-, or late stages of quitting to create an order for the messages. For phase 3, a total of 38.5% (232/603) of the participants provided ratings at the 12-week follow-up. In total, 69.8% (162/232) reported that the SMS text messages had been useful, and a significant association between quit rates and usefulness ratings was found (χ21=9.6; P=.002). A content analysis of free-text comments revealed that the 2 most common positive themes were helpful (13/47, 28%) and encouraging (6/47, 13%) and the 2 most common negative themes were too frequent (9/47, 19%) and annoying (4/47, 9%). CONCLUSIONS: In this paper, we describe the initial coproduction and codevelopment of a set of SMS text messages to help smokers stop smoking by transitioning to vaping. We encourage researchers to use, further develop, and evaluate the set of SMS text messages and adapt it to target populations and relevant contexts.

3.
Addiction ; 118(11): 2105-2117, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455014

RESUMEN

AIMS, DESIGN AND SETTING: The aim of this study was to determine which combination(s) of five e-cigarette-orientated intervention components, delivered on-line, affect smoking cessation. An on-line (UK) balanced five-factor (2 × 2 × 2 × 2 × 2 = 32 intervention combinations) randomized factorial design guided by the multi-phase optimization strategy (MOST) was used. PARTICIPANTS: A total of 1214 eligible participants (61% female; 97% white) were recruited via social media. INTERVENTIONS: The five on-line intervention components designed to help smokers switch to exclusive e-cigarette use were: (1) tailored device selection advice; (2) tailored e-liquid nicotine strength advice; (3): tailored e-liquid flavour advice; (4) brief information on relative harms; and (5) text message (SMS) support. MEASUREMENTS: The primary outcome was 4-week self-reported complete abstinence at 12 weeks post-randomization. Primary analyses were intention-to-treat (loss to follow-up recorded as smoking). Logistic regressions modelled the three- and two-way interactions and main effects, explored in that order. FINDINGS: In the adjusted model the only significant interaction was a two-way interaction, advice on flavour combined with text message support, which increased the odds of abstinence (odds ratio = 1.55, 95% confidence interval = 1.13-2.14, P = 0.007, Bayes factor = 7.25). There were no main effects of the intervention components. CONCLUSIONS: Text-message support with tailored advice on flavour is a promising intervention combination for smokers using an e-cigarette in a quit attempt.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Humanos , Femenino , Masculino , Teorema de Bayes , Fumar , Fumar Tabaco
4.
Cochrane Database Syst Rev ; 5: CD013600, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162745

RESUMEN

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


Asunto(s)
COVID-19 , Virosis , Humanos , COVID-19/terapia , SARS-CoV-2 , Sueroterapia para COVID-19 , Inmunoglobulinas
5.
Cochrane Database Syst Rev ; 2: CD013600, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36734509

RESUMEN

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


ANTECEDENTES: El plasma de convaleciente podría reducir la mortalidad en pacientes con enfermedades respiratorias víricas, y se está investigando como posible tratamiento para la enfermedad por coronavirus 2019 (covid­19). Se requiere un profundo conocimiento del conjunto de evidencia actual sobre los beneficios y riesgos de esta intervención. OBJETIVOS: Evaluar la efectividad y seguridad de la transfusión de plasma de convaleciente en el tratamiento de las personas con covid­19; y mantener la vigencia de la evidencia con un enfoque de revisión sistemática continua. MÉTODOS DE BÚSQUEDA: Para identificar estudios en curso y completados, se realizaron búsquedas en la base de datos COVID­19 de la OMS: literatura global sobre la enfermedad por coronavirus, MEDLINE, Embase, el Registro Cochrane de Estudios de covid­19 y la Plataforma COVID­19 L*OVE de Epistemonikos. Se realizaron búsquedas mensuales hasta el 3 de marzo de 2022. CRITERIOS DE SELECCIÓN: Se incluyeron ensayos controlados aleatorizados (ECA) que evaluaron el plasma de convaleciente para la covid­19, independientemente de la gravedad de la enfermedad, la edad, el sexo o el origen étnico. Se excluyeron los estudios que incluyeron poblaciones con otras enfermedades por coronavirus, como el síndrome respiratorio agudo grave (SARS) o el síndrome respiratorio de Oriente Medio (MERS), así como los estudios que evaluaron la inmunoglobulina estándar. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Se siguió la metodología estándar de Cochrane. Para evaluar el sesgo en los estudios incluidos se utilizó la herramienta RoB 2. Se utilizó el método GRADE para evaluar la certeza de la evidencia para los siguientes desenlaces: mortalidad por todas las causas hasta el día 28, empeoramiento y mejoría del estado clínico (para personas con enfermedad moderada a grave), ingreso hospitalario o muerte, resolución de los síntomas de covid­19 (para personas con enfermedad leve), calidad de vida, eventos adversos de grado 3 o 4 y eventos adversos graves. RESULTADOS PRINCIPALES: En esta cuarta versión actualizada de la revisión se incluyeron 33 ECA con 24 861 participantes, de los cuales 11 432 recibieron plasma de convaleciente. De ellos, 9 estudios son unicéntricos y 24 multicéntricos. Se realizaron 14 estudios en América, 8 en Europa, 3 en el Sudeste Asiático, 2 en África, 2 en el Pacífico occidental, 3 en el Mediterráneo oriental y 1 en varias regiones. Se identificaron otros 49 estudios en curso que evaluaron el plasma de convaleciente, y 33 estudios que informaban de que se habían completado. Personas con un diagnóstico confirmado de covid­19 y enfermedad de moderada a grave El uso de plasma de convaleciente se investigó en 29 ECA con 22 728 participantes con enfermedad moderada a grave. En 23 ECA con 22 020 participantes se comparó el plasma de convaleciente con el placebo o la atención habitual sola, en 5 se comparó con plasma estándar y en 1, con inmunoglobulina humana. Se evalúan subgrupos sobre detección de anticuerpos, aparición de síntomas, grupos de ingresos de países y varias comorbilidades en el texto completo. Plasma de convaleciente versus placebo o atención habitual sola El plasma de convaleciente no reduce la mortalidad por todas las causas hasta el día 28 (razón de riesgos [RR] 0,98; intervalo de confianza [IC] del 95%: 0,92 a 1,03; 220 por cada 1000; 21 ECA, 19 021 participantes; evidencia de certeza alta). Tiene poca o ninguna repercusión en la necesidad de ventilación mecánica invasiva o la muerte (RR 1,03; IC del 95%: 0,97 a 1,11; 296 por cada 1000; seis ECA, 14 477 participantes; evidencia de certeza alta) y no tiene ningún efecto en si los participantes reciben el alta hospitalaria (RR 1,00; IC de 95%: 0,97 a 1,02; 665 por cada 1000; seis ECA, 12 721 participantes; evidencia de certeza alta). El plasma de convaleciente podría tener poca o ninguna repercusión en la calidad de vida (DM 1,00; IC del 95%: ­2,14 a 4,14; un ECA, 483 participantes; evidencia de certeza baja). El plasma de convaleciente podría tener poco o ningún efecto en el riesgo de eventos adversos de grado 3 y 4 (RR 1,17; IC del 95%: 0,96 a 1,42; 212 por cada 1000; seis ECA, 2392 participantes; evidencia de certeza baja). Es probable que tenga poco o ningún efecto sobre el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,91 a 1,44; 135 por cada 1000; seis ECA, 3901 participantes; evidencia de certeza moderada). Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce o aumenta la mortalidad por cualquier causa hasta el día 28 (RR 0,73; IC del 95%: 0,45 a 1,19; 129 por cada 1000; cuatro ECA, 484 participantes; evidencia de certeza muy baja). No se sabe si el plasma de convaleciente reduce o aumenta la necesidad de ventilación mecánica invasiva o la muerte (RR 5,59; IC del 95%: 0,29 a 108,38; 311 por cada 1000; un estudio, 34 participantes; evidencia de certeza muy baja) ni si reduce o aumenta el riesgo de eventos adversos graves (RR 0,80; IC 95%: 0,55 a 1,15; 236 por cada 1000; tres ECA, 327 participantes; evidencia de certeza muy baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus inmunoglobulina humana El plasma de convaleciente podría tener poco o ningún efecto sobre la mortalidad por cualquier causa hasta el día 28 (RR 1,07; IC del 95%: 0,76 a 1,50; 464 por cada 1000; un estudio, 190 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Personas con un diagnóstico confirmado de infección por SARS­CoV­2 y enfermedad leve Se identificaron dos ECA, con 536 participantes, que compararon el plasma de convaleciente con placebo o atención habitual sola y dos ECA, con 1597 participantes con enfermedad leve, que compararon el plasma de convaleciente con plasma estándar. Plasma de convaleciente versus placebo o atención habitual sola No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (odds ratio [OR] 0,36; IC del 95%: 0,09 a 1,46; 8 por cada 1000; dos ECA, 536 participantes; evidencia de certeza muy baja). Podría tener poco o ningún efecto en el ingreso hospitalario o la muerte a los 28 días (RR 1,05; IC del 95%: 0,60 a 1,84; 117 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el tiempo hasta la resolución de los síntomas de covid­19 (cociente de riesgos instantáneos [CRI] 1,05; IC del 95%: 0,85 a 1,30; 483 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el riesgo de eventos adversos de grados 3 y 4 (RR 1,29; IC del 95%: 0,75 a 2,19; 144 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja) y en el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,66 a 1,94; 133 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (OR 0,30; IC del 95%: 0,05 a 1,75; 2 por cada 1000; dos ECA, 1597 participantes; evidencia de certeza muy baja). Es probable que reduzca el ingreso hospitalario o la muerte a los 28 días (RR 0,49; IC del 95%: 0,31 a 0,75; 36 por cada 1000; dos ECA, 1595 participantes; evidencia de certeza moderada). El plasma de convaleciente podría tener poco o ningún efecto sobre la resolución inicial de los síntomas hasta el día 28 (RR 1,12; IC del 95%: 0,98 a 1,27; un ECA, 416 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Esta es una revisión sistemática continua. Cada mes se busca nueva evidencia y se actualiza la revisión cuando se identifica evidencia nueva relevante. CONCLUSIONES DE LOS AUTORES: Para la comparación del plasma de convaleciente versus placebo o la atención habitual sola, existe evidencia de certeza alta de que el plasma de convaleciente para personas con enfermedad moderada a grave no reduce la mortalidad y tiene poco o ningún efecto en la mejoría o el empeoramiento clínico. Es probable que tenga poco o ningún efecto en los eventos adversos graves. Para las personas con enfermedad leve, existe evidencia de certeza baja para los desenlaces principales. Hay 49 estudios en curso y 33 estudios que declaran estar completados en un registro de ensayos. La publicación de los estudios en curso podría resolver algunas de las incertidumbres en torno al tratamiento con plasma de convaleciente para personas con enfermedad asintomática o leve.


Asunto(s)
COVID-19 , Virosis , Humanos , COVID-19/terapia , Sueroterapia para COVID-19 , Inmunoglobulinas , SARS-CoV-2
6.
Cochrane Database Syst Rev ; 2: CD013649, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800489

RESUMEN

BACKGROUND: Vascular surgery may be followed by internal bleeding due to inadequate surgical haemostasis, abnormal clotting, or surgical complications. Bleeding ranges from minor, with no transfusion requirement, to massive, requiring multiple blood product transfusions. There are a number of drugs, given systemically or applied locally, which may reduce the need for blood transfusion. OBJECTIVES: To assess the effectiveness and safety of anti-fibrinolytic and haemostatic drugs and agents in reducing bleeding and the need for blood transfusion in people undergoing major vascular surgery or vascular procedures with a risk of moderate or severe (> 500 mL) blood loss. SEARCH METHODS: We searched: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL, and Transfusion Evidence Library. We also searched the WHO ICTRP and ClinicalTrials.gov trial registries for ongoing and unpublished trials. Searches used a combination of MeSH and free text terms from database inception to 31 March 2022, without restriction on language or publication status. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in adults of drug treatments to reduce bleeding due to major vascular surgery or vascular procedures with a risk of moderate or severe blood loss, which used placebo, usual care or another drug regimen as control. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were units of red cells transfused and all-cause mortality. Our secondary outcomes included risk of receiving an allogeneic blood product, risk of reoperation or repeat procedure due to bleeding, risk of a thromboembolic event, risk of a serious adverse event and length of hospital stay. We used GRADE to assess certainty of evidence. MAIN RESULTS: We included 22 RCTs with 3393 participants analysed, of which one RCT with 69 participants was reported only in abstract form, with no usable data. Seven RCTs evaluated systemic drug treatments (three aprotinin, two desmopressin, two tranexamic acid) and 15 RCTs evaluated topical drug treatments (drug-containing bioabsorbable dressings or glues), including fibrin, thrombin, collagen, gelatin, synthetic sealants and one investigational new agent. Most trials were conducted in high-income countries and the majority of the trials only included participants undergoing elective surgery. We also identified two ongoing RCTs. We were unable to perform the planned network meta-analysis due to the sparse reporting of outcomes relevant to this review. Systemic drug treatments We identified seven trials of three systemic drugs: aprotinin, desmopressin and tranexamic acid, all with placebo controls. The trials of aprotinin and desmopressin were small with very low-certainty evidence for all of our outcomes. Tranexamic acid versus placebo was the systemic drug comparison with the largest number of participants (2 trials; 1460 participants), both at low risk of bias. The largest of these included a total of 9535 individuals undergoing a number of different higher risk surgeries and reported limited information on the vascular subgroup (1399 participants). Neither trial reported the number of units of red cells transfused per participant up to 30 days. Three outcomes were associated with very low-certainty evidence due to the very wide confidence intervals (CIs) resulting from small study sizes and low number of events. These were: all-cause mortality up to 30 days; number of participants requiring an allogeneic blood transfusion up to 30 days; and risk of requiring a repeat procedure or operation due to bleeding. Tranexamic acid may have no effect on the risk of thromboembolic events up to 30 days (risk ratio (RR) 1.10, 95% CI 0.88 to 1.36; 1 trial, 1360 participants; low-certainty evidence due to imprecision). There is one large ongoing trial (8320 participants) comparing tranexamic acid versus placebo in people undergoing non-cardiac surgery who are at high risk of requiring a red cell transfusion. This aims to complete recruitment in April 2023. This trial has primary outcomes of proportion of participants transfused with red blood cells and incidence of venous thromboembolism (DVT or PE). Topical drug treatments Most trials of topical drug treatments were at high risk of bias due to their open-label design (compared with usual care, or liquids were compared with sponges). All of the trials were small, most were very small, and few reported clinically relevant outcomes in the postoperative period. Fibrin sealant versus usual care was the topical drug comparison with the largest number of participants (5 trials, 784 participants). The five trials that compared fibrin sealant with usual care were all at high risk of bias, due to the open-label trial design with no measures put in place to minimise reporting bias. All of the trials were funded by pharmaceutical companies. None of the five trials reported the number of red cells transfused per participant up to 30 days or the number of participants requiring an allogeneic blood transfusion up to 30 days. The other three outcomes were associated with very low-certainty evidence with wide confidence intervals due to small sample sizes and the low number of events, these were: all-cause mortality up to 30 days; risk of requiring a repeat procedure due to bleeding; and risk of thromboembolic disease up to 30 days. We identified one large trial (500 participants) comparing fibrin sealant versus usual care in participants undergoing abdominal aortic aneurysm repair, which has not yet started recruitment. This trial lists death due to arterial disease and reintervention rates as primary outcomes. AUTHORS' CONCLUSIONS: Because of a lack of data, we are uncertain whether any systemic or topical treatments used to reduce bleeding due to major vascular surgery have an effect on: all-cause mortality up to 30 days; risk of requiring a repeat procedure or operation due to bleeding; number of red cells transfused per participant up to 30 days or the number of participants requiring an allogeneic blood transfusion up to 30 days. There may be no effect of tranexamic acid on the risk of thromboembolic events up to 30 days, this is important as there has been concern that this risk may be increased. Trials with sample size targets of thousands of participants and clinically relevant outcomes are needed, and we look forward to seeing the results of the ongoing trials in the future.


Asunto(s)
Ácido Tranexámico , Adulto , Humanos , Aprotinina , Transfusión Sanguínea , Desamino Arginina Vasopresina/uso terapéutico , Adhesivo de Tejido de Fibrina , Hemorragia/etiología , Hemorragia/prevención & control , Metaanálisis en Red , Ácido Tranexámico/uso terapéutico
7.
Cochrane Database Syst Rev ; 1: CD015167, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700518

RESUMEN

BACKGROUND: Hyperimmune immunoglobulin (hIVIG) contains polyclonal antibodies, which can be prepared from large amounts of pooled convalescent plasma or prepared from animal sources through immunisation. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). This review was previously part of a parent review addressing convalescent plasma and hIVIG for people with COVID-19 and was split to address hIVIG and convalescent plasma separately. OBJECTIVES: To assess the benefits and harms of hIVIG therapy for the treatment of people with COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Research Database, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform and Medline and Embase from 1 January 2019 onwards. We carried out searches on 31 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated hIVIG for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies that evaluated standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used RoB 2. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), quality of life, adverse events, and serious adverse events. MAIN RESULTS: We included five RCTs with 947 participants, of whom 688 received hIVIG prepared from humans, 18 received heterologous swine glyco-humanised polyclonal antibody, and 241 received equine-derived processed and purified F(ab')2 fragments. All participants were hospitalised with moderate-to-severe disease, most participants were not vaccinated (only 12 participants were vaccinated). The studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern. There are no data for people with COVID-19 with no symptoms (asymptomatic) or people with mild COVID-19. We identified a further 10 ongoing studies evaluating hIVIG. Benefits of hIVIG prepared from humans We included data on one RCT (579 participants) that assessed the benefits and harms of hIVIG 0.4 g/kg compared to saline placebo. hIVIG may have little to no impact on all-cause mortality at 28 days (risk ratio (RR) 0.79, 95% confidence interval (CI) 0.43 to 1.44; absolute effect 77 per 1000 with placebo versus 61 per 1000 (33 to 111) with hIVIG; low-certainty evidence). The evidence is very uncertain about the effect on worsening of clinical status at day 7 (RR 0.85, 95% CI 0.58 to 1.23; very low-certainty evidence). It probably has little to no impact on improvement of clinical status on day 28 (RR 1.02, 95% CI 0.97 to 1.08; moderate-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if hIVIG has any impact on quality of life. Harms of hIVIG prepared from humans hIVIG may have little to no impact on adverse events at any grade on day 1 (RR 0.98, 95% CI 0.81 to 1.18; 431 per 1000; 1 study 579 participants; low-certainty evidence). Patients receiving hIVIG probably experience more adverse events at grade 3-4 severity than patients who receive placebo (RR 4.09, 95% CI 1.39 to 12.01; moderate-certainty evidence). hIVIG may have little to no impact on the composite outcome of serious adverse events or death up to day 28 (RR 0.72, 95% CI 0.45 to 1.14; moderate-certainty evidence). We also identified additional results on the benefits and harms of other dose ranges of hIVIG, not included in the summary of findings table, but summarised in additional tables. Benefits of animal-derived polyclonal antibodies We included data on one RCT (241 participants) to assess the benefits and harms of receptor-binding domain-specific polyclonal F(ab´)2 fragments of equine antibodies (EpAbs) compared to saline placebo. EpAbs may reduce all-cause mortality at 28 days (RR 0.60, 95% CI 0.26 to 1.37; absolute effect 114 per 1000 with placebo versus 68 per 1000 (30 to 156) ; low-certainty evidence). EpAbs may reduce worsening of clinical status up to day 28 (RR 0.67, 95% CI 0.38 to 1.18; absolute effect 203 per 1000 with placebo versus 136 per 1000 (77 to 240); low-certainty evidence). It may have some effect on improvement of clinical status on day 28 (RR 1.06, 95% CI 0.96 to 1.17; low-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if EpAbs have any impact on quality of life. Harms of animal-derived polyclonal antibodies EpAbs may have little to no impact on the number of adverse events at any grade up to 28 days (RR 0.99, 95% CI 0.74 to 1.31; low-certainty evidence). Adverse events at grade 3-4 severity were not reported. Individuals receiving EpAbs may experience fewer serious adverse events than patients receiving placebo (RR 0.67, 95% CI 0.38 to 1.19; low-certainty evidence). We also identified additional results on the benefits and harms of other animal-derived polyclonal antibody doses, not included in the summary of findings table, but summarised in additional tables. AUTHORS' CONCLUSIONS: We included data from five RCTs that evaluated hIVIG compared to standard therapy, with participants with moderate-to-severe disease. As the studies evaluated different preparations (from humans or from various animals) and doses, we could not pool them. hIVIG prepared from humans may have little to no impact on mortality, and clinical improvement and worsening. hIVIG may increase grade 3-4 adverse events. Studies did not evaluate quality of life. RBD-specific polyclonal F(ab´)2 fragments of equine antibodies may reduce mortality and serious adverse events, and may reduce clinical worsening. However, the studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern and prior to widespread vaccine rollout. As no studies evaluated hIVIG for participants with asymptomatic infection or mild disease, benefits for these individuals remains uncertain. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.


Asunto(s)
Sueroterapia para COVID-19 , COVID-19 , Inmunoglobulinas , Humanos , COVID-19/terapia , COVID-19/virología , Inmunoglobulinas/uso terapéutico , SARS-CoV-2/genética , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Nicotine Tob Res ; 25(6): 1109-1115, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36534967

RESUMEN

INTRODUCTION: Pod Vaping Devices (PVD) such as JUUL have become extremely popular in the United States although their uptake and use in the United Kingdom remain lower. A key difference between the United States and the United Kingdom is the nicotine strength legally permitted, typically 59 mg/mL in the United States but capped at 20 mg/mL in the United Kingdom and European Union. This may limit the ability of EU vaping devices to deliver satisfactory nicotine levels. The primary aim was to compare the EU- (18 mg/mL nicotine strength) with the U.S.-JUUL (59 mg/mL) on daily smokers' subjective experiences, craving relief, and blood nicotine levels. AIMS AND METHODS: Double-blind, counterbalanced within-participants design with two conditions: 18 mg/mL versus 59 mg/mL. On two separate occasions, UK smokers (N =19, 10 males, 9 females) vaped ad libitum for 60 mins and provided blood samples at baseline 5, 15, 30, and 60 min. Subjective effects (incl. satisfaction) were measured at 10 and 60 min and, craving and withdrawal symptoms (WS) at baseline, 10 and 60 min. RESULTS: Satisfaction did not differ between conditions. There was a significant interaction between Time and Nicotine concentration for Nicotine Hit (p = .045). Mean self-report of Nicotine Hit increased under the use of the 59 mg/mL from 10 to 60 min and decreased under the 18 mg/mL. Participants reported higher Throat Hits following use of the 59 mg/mL (p = .017). There were no differences in other subjective effects including craving, WS relief (ps > .05). Liquid consumption was doubled under the 18 versus the 59 mg/mL (p = .001) and nicotine boost was significantly higher in the 59 mg/mL at all time-points (p ≤ .001). CONCLUSIONS: The results did not support our hypotheses that satisfaction, craving, and withdrawal reduction would be higher with the 59 mg/mL JUUL. This could be because of the doubling of liquid consumption in the 18 mg/mL. Whether satisfaction and craving relief persist over the longer-term outside of the lab remains to be determined. IMPLICATIONS: In a 60-min ad-lib vaping session, the EU-JUUL was found to produce comparable satisfaction, craving- and withdrawal relief as the U.S.-JUUL in this sample of UK smokers. These findings could suggest that the higher nicotine concentrations available in PVDs in the United States are not necessary for providing satisfaction and improving craving and WS. However, this was at the expense of a considerable increase in liquid consumption indicative of compensatory puffing.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Síndrome de Abstinencia a Sustancias , Productos de Tabaco , Vapeo , Masculino , Femenino , Humanos , Estados Unidos , Nicotina , Fumadores , Reino Unido , Satisfacción Personal
9.
Transfus Med ; 33(1): 26-38, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36412541

RESUMEN

OBJECTIVE: Evaluate the safety and effectiveness of convalescent plasma (CP) or hyperimmune immunoglobulin (hIVIG) in severe respiratory disease caused by coronaviruses or influenza, in patients of all ages requiring hospital admission. METHODS: We searched multiple electronic databases for all publications to 12th October 2020, and RCTs only to 28th June 2021. Two reviewers screened, extracted, and analysed data. We used Cochrane ROB (Risk of Bias)1 for RCTs, ROBINS-I for non-RCTs, and GRADE to assess the certainty of the evidence. RESULTS: Data from 30 RCTs and 2 non-RCTs showed no overall difference between groups for all-cause mortality and adverse events in four comparisons. Certainty of the evidence was downgraded for high ROB and imprecision. (1) CP versus standard care (SoC) (20 RCTS, 2 non-RCTs, very-low to moderate-high certainty); (2) CP versus biologically active control (6 RCTs, very-low certainty); (3) hIVIG versus SoC (3 RCTs, very-low certainty); (4) early CP versus deferred CP (1 RCT, very-low certainty). Subgrouping by titre improved precision in one outcome (30-day mortality) for the 'COVID high-titre' category in Comparison 1 (no difference, high certainty) and Comparison 2 (favours CP, very-low certainty). Post hoc analysis suggests a possible benefit of CP in patients testing negative for antibodies at baseline, compared with those testing positive. CONCLUSION: A minimum titre should be established and ensured for a positive biological response to the therapy. Further research on the impact of CP/hIVIG in patients who have not yet produced antibodies to the virus would be useful to target therapies at groups who will potentially benefit the most.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Sueroterapia para COVID-19 , Inmunoglobulinas
10.
Transfus Med Rev ; 36(2): 97-106, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35031197

RESUMEN

Our objective was to systematically evaluate the efficacy and safety of intravenous (IV) iron therapy for treating anaemia in critically ill adults (>16 years) admitted to intensive care or high dependency units. We excluded quasi-RCTs and other not truly randomised trials. We searched 7 electronic databases (including CENTRAL, MEDLINE, and Embase) using a pre-defined search strategy from inception to June 14, 2021. One reviewer screened, extracted, and analysed data, with verification by a second reviewer of all decisions. We used Cochrane risk of bias (ROB) 1 and GRADE to assess the certainty of the evidence. We reported 3 comparisons across 1198 patients, in 8 RCTs: (1) IV iron vs control (7 RCTs, 748 participants); our primary outcome (hemoglobin (Hb) concentration at 10 to 30 days) was reported in 7 of the 8 included trials. There was evidence of an effect (very-low certainty) in favour of IV iron over control in the main comparison only (6 RCTs, n = 528, mean difference (MD) 0.52g/dL [95%CI 0.23, 0.81], P = .0005). For the remaining outcomes there was no evidence of an effect in either direction (low certainty of evidence for Hb concentration at <10 days; very-low certainty of evidence for hospital duration, ICU duration, hospital readmission, infection, mortality; HRQoL outcomes were not GRADED). (2) IV iron + subcutaneous erythropoietin (EPO) vs control (2 RCTs, 104 participants); reported outcomes showed no evidence of effect in either direction, based on very-low certainty evidence (Hb concentration at 10-30 days, and <10 days, infection, mortality). (3) Hepcidin-guided treatment with IV iron or iron+ EPO vs standard care (1 RCT, 399 participants) reported evidence of an effect in favour of the intervention for 90-day mortality (low certainty of evidence), but no other group differences for the reported outcomes (low certainty evidence for Hb concentration at 10-30 days, hospital duration; HRQoL was not GRADED). The evidence across all comparisons was downgraded for high and unclear ROB for lack of blinding, incomplete outcome data, baseline imbalance, and imprecision around the estimate (wide CIs and small sample size). In conclusion, the current evidence continues to support further investigation into the role for iron therapy in increasing Hb in critically ill patients. Recent, small, trials have begun to focus on patient-centred outcomes but a large, well conducted, and adequately powered trial is needed to inform clinical practice.


Asunto(s)
Anemia , Enfermedad Crítica , Adulto , Anemia/tratamiento farmacológico , Enfermedad Crítica/terapia , Dihidrotaquisterol , Hospitalización , Humanos , Hierro/uso terapéutico
11.
Harm Reduct J ; 18(1): 96, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496865

RESUMEN

BACKGROUND: Health messages on e-cigarette packs emphasise nicotine addiction or harms using similar wording to warnings on cigarette packs. These may not be appropriate for e-cigarettes which constitute a reduced risk alternative for smokers. This research aimed to (1) develop and test a selection of relative risk messages for e-cigarette products; (2) compare these to the two current EU Tobacco Products Directive (TPD) nicotine addiction messages; and (3) explore differences between smokers, non-smokers and dual users. METHOD: Twenty-six messages focusing on either harm-reduction or cessation were developed and rated by multidisciplinary experts for accuracy, persuasiveness and clarity. The eight highest ranking messages were compared alongside the TPD messages in a sample of 983 European residents (316 smokers, 327 non-smokers, 340 dual users) on understandability, believability and convincingness. RESULTS: On all three constructs combined, the two TPD messages rated the highest, closely followed by four relative risk messages "Completely switching to e-cigarettes lowers your risk of smoking related diseases", "Use of this product is much less harmful than smoking", "Completely switching to e-cigarettes is a healthier alternative to smoking", and "This product presents substantially lower risks to health than cigarettes" which did not differ statistically from the TPD messages. Non-smokers rated TPD1 significantly higher overall than dual users. Dual users rated "This product is a safer alternative to smoking" significantly higher than non-smokers. Messages did not differ on understandability. CONCLUSIONS: These alternative messages provide a useful resource for future research and for policy makers considering updating e-cigarette product labelling.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Humanos , Etiquetado de Productos , Riesgo , Fumadores
12.
Cochrane Database Syst Rev ; 5: CD013600, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34013969

RESUMEN

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are being investigated as potential therapies for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of these interventions is required.  OBJECTIVES: Using a living systematic review approach, to assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19; and to maintain the currency of the evidence. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform, and trial registries. Searches were done on 17 March 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma or hyperimmune immunoglobulin for COVID-19, irrespective of disease severity, age, gender or ethnicity. For safety assessments, we also included non-controlled non-randomised studies of interventions (NRSIs) if 500 or more participants were included. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of Bias 2' tool for RCTs, and for NRSIs, the assessment criteria for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), development of severe clinical COVID-19 symptoms (for individuals with asymptomatic or mild disease), quality of life (including fatigue and functional independence), grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: We included 13 studies (12 RCTs, 1 NRSI) with 48,509 participants, of whom 41,880 received convalescent plasma. We did not identify any completed studies evaluating hyperimmune immunoglobulin. We identified a further 100 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, and 33 studies reporting as being completed or terminated. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease Eleven RCTs and one NRSI investigated the use of convalescent plasma for 48,349 participants with moderate to severe disease. Nine RCTs compared convalescent plasma to placebo treatment or standard care alone, and two compared convalescent plasma to standard plasma (results not included in abstract). Effectiveness of convalescent plasma We included data on nine RCTs (12,875 participants) to assess the effectiveness of convalescent plasma compared to placebo or standard care alone.  Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.05; 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable; 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 95% CI 0.57 to 1.93; 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 95% CI 0.89 to 1.08; 4 RCTs, 11,765 participants; high-certainty evidence). We did not identify any subgroup differences.  We did not identify any studies reporting quality of life, and therefore, do not know whether convalescent plasma has any impact on quality of life. One RCT assessed resolution of fatigue on day 7, but we are very uncertain about the effect (RR 1.21, 95% CI 1.02 to 1.42; 309 participants; very low-certainty evidence).  Safety of convalescent plasma We included results from eight RCTs, and one NRSI, to assess the safety of convalescent plasma. Some of the RCTs reported on safety data only for the convalescent plasma group.  We are uncertain whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 95% CI 0.58 to 1.41; 4 RCTs, 905 participants; low-certainty evidence), and serious adverse events (RR 1.24, 95% CI 0.81 to 1.90; 2 RCTs, 414 participants; low-certainty evidence).  A summary of reported events of the NRSI (reporting safety data for 20,000 of 35,322 transfused participants), and four RCTs reporting safety data only for transfused participants (6125 participants) are included in the full text. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and asymptomatic or mild disease We identified one RCT reporting on 160 participants, comparing convalescent plasma to placebo treatment (saline).  Effectiveness of convalescent plasma We are very uncertain about the effect of convalescent plasma on all-cause mortality (RR 0.50, 95% CI 0.09 to 2.65; very low-certainty evidence). We are uncertain about the effect of convalescent plasma on developing severe clinical COVID-19 symptoms (RR not estimable; low-certainty evidence).  We identified no study reporting quality of life.  Safety of convalescent plasma We do not know whether convalescent plasma is associated with a higher risk of grade 3 or 4 adverse events (very low-certainty evidence), or serious adverse events (very low-certainty evidence). This is a living systematic review. We search weekly for new evidence and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review. AUTHORS' CONCLUSIONS: We have high certainty in the evidence that convalescent plasma for the treatment of individuals with moderate to severe disease does not reduce mortality and has little to no impact on measures of clinical improvement. We are uncertain about the adverse effects of convalescent plasma. While major efforts to conduct research on COVID-19 are being made, heterogeneous reporting of outcomes is still problematic. There are 100 ongoing studies and 33 studies reporting in a study registry as being completed or terminated. Publication of ongoing studies might resolve some of the uncertainties around hyperimmune immunoglobulin therapy for people with any disease severity, and convalescent plasma therapy for people with asymptomatic or mild disease.


Asunto(s)
COVID-19/terapia , Sesgo , COVID-19/mortalidad , Causas de Muerte , Humanos , Inmunización Pasiva/efectos adversos , Inmunización Pasiva/métodos , Inmunización Pasiva/mortalidad , Inmunización Pasiva/estadística & datos numéricos , Ensayos Clínicos Controlados no Aleatorios como Asunto/estadística & datos numéricos , Pandemias , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Respiración Artificial/estadística & datos numéricos , Resultado del Tratamiento , Desconexión del Ventilador/estadística & datos numéricos , Sueroterapia para COVID-19
13.
Nicotine Tob Res ; 23(7): 1153-1159, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33483754

RESUMEN

INTRODUCTION: In a secondary analysis of our published data demonstrating compensatory vaping behavior (increased puff number, puff duration, and device power) with e-cigarettes refilled with low versus high nicotine concentration e-liquid, here we examine 5-day time course over which compensatory behavior occurs under fixed and adjustable power settings. AIMS AND METHODS: Nineteen experienced vapers (37.90 ± 10.66 years, eight females) vaped ad libitum for 5 consecutive days under four counterbalanced conditions (ie, 20 days in total): (1) low nicotine (6 mg/mL)/fixed power (4.0 V/10 W); (2) low nicotine/adjustable power; (3) high nicotine (18 mg/mL)/fixed power; (4) high nicotine/adjustable power (at 1.6 Ohm). Puff number, puff duration, and power settings were recorded by the device. For each day, total daily puffing time was calculated by multiplying daily puff number by mean daily puff duration. RESULTS: A significant day × setting interaction revealed that whilst puffing compensation (daily puffing time) continued to increase over 5 days under fixed power, it remained stable when power settings were adjustable. Separate analysis for puff number and puff duration suggested that the puffing compensatory behavior was largely maintained via longer puff duration. CONCLUSIONS: Under fixed power conditions (4.0 V/10 W), vapers appear to compensate for poor nicotine delivery by taking longer puffs and this compensatory puffing appears to be maintained over time. IMPLICATIONS: Studies in smokers suggest that when switching to lower nicotine levels, compensation for poorer nicotine delivery is transient. Our novel findings suggest that vapers show a different pattern of compensation which is influenced by both nicotine strength and device power settings. When power is fixed (4.0 V; 10 W), compensation (via more intensive puffing) appears prolonged, persisting up to 5 days. Under adjustable settings when power is increased, puffing patterns remain stable over time. Implications of such compensatory behaviors for product safety and user satisfaction need further exploration.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Adulto , Femenino , Humanos , Nicotina , Fumadores
14.
Cochrane Database Syst Rev ; 10: CD013600, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044747

RESUMEN

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 19 August 2020. SELECTION CRITERIA: We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' 2.0 tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, mortality (time to event), improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events (AEs), and serious adverse events (SAEs). MAIN RESULTS: This is the second living update of our review. We included 19 studies (2 RCTs, 8 controlled NRSIs, 9 non-controlled NRSIs) with 38,160 participants, of whom 36,081 received convalescent plasma. Two completed RCTs are awaiting assessment (published after 19 August 2020). We identified a further 138 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 73 are randomised (3 reported in a study registry as already being completed, but without results). We did not identify any completed studies evaluating hyperimmune immunoglobulin. We did not include data from controlled NRSIs in data synthesis because of critical risk of bias. The overall certainty of evidence was low to very low, due to study limitations and results including both potential benefits and harms.  Effectiveness of convalescent plasma for people with COVID-19  We included results from two RCTs (both stopped early) with 189 participants, of whom 95 received convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. We are uncertain whether convalescent plasma decreases all-cause mortality at hospital discharge (risk ratio (RR) 0.55, 95% confidence interval (CI) 0.22 to 1.34; 1 RCT, 86 participants; low-certainty evidence).  We are uncertain whether convalescent plasma decreases mortality (time to event) (hazard ratio (HR) 0.64, 95% CI 0.33 to 1.25; 2 RCTs, 189 participants; low-certainty evidence). Convalescent plasma may result in little to no difference in improvement of clinical symptoms (i.e. need for respiratory support) at seven days (RR 0.98, 95% CI 0.30 to 3.19; 1 RCT, 103 participants; low-certainty evidence). Convalescent plasma may increase improvement of clinical symptoms at up to 15 days (RR 1.34, 95% CI 0.85 to 2.11; 2 RCTs, 189 participants; low-certainty evidence), and at up to 30 days (RR 1.13, 95% CI 0.88 to 1.43; 2 studies, 188 participants; low-certainty evidence).  No studies reported on quality of life.  Safety of convalescent plasma for people with COVID-19 We included results from two RCTs, eight controlled NRSIs and nine non-controlled NRSIs assessing safety of convalescent plasma. Reporting of safety data and duration of follow-up was variable. The controlled studies reported on AEs and SAEs only in participants receiving convalescent plasma. Some, but not all, studies included death as a SAE.  The studies did not report the grade of AEs. Fourteen studies (566 participants) reported on AEs of possible grade 3 or 4 severity. The majority of these AEs were allergic or respiratory events. We are very uncertain whether convalescent plasma therapy affects the risk of moderate to severe AEs (very low-certainty evidence).  17 studies (35,944 participants) assessed SAEs for 20,622 of its participants. The majority of participants were from one non-controlled NRSI (20,000 participants), which reported on SAEs within the first four hours and within an additional seven days after transfusion. There were 63 deaths, 12 were possibly and one was probably related to transfusion. There were 146 SAEs within four hours and 1136 SAEs within seven days post-transfusion. These were predominantly allergic or respiratory, thrombotic or thromboembolic and cardiac events. We are uncertain whether convalescent plasma therapy results in a clinically relevant increased risk of SAEs (low-certainty evidence). AUTHORS' CONCLUSIONS: We are uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. There was limited information regarding grade 3 and 4 AEs to determine the effect of convalescent plasma therapy on clinically relevant SAEs. In the absence of a control group, we are unable to assess the relative safety of convalescent plasma therapy.  While major efforts to conduct research on COVID-19 are being made, recruiting the anticipated number of participants into these studies is problematic. The early termination of the first two RCTs investigating convalescent plasma, and the lack of data from 20 studies that have completed or were due to complete at the time of this update illustrate these challenges. Well-designed studies should be prioritised. Moreover, studies should report outcomes in the same way, and should consider the importance of maintaining comparability in terms of co-interventions administered in all study arms.  There are 138 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 73 are RCTs (three already completed). This is the second living update of the review, and we will continue to update this review periodically. Future updates may show different results to those reported here.


Asunto(s)
Infecciones por Coronavirus/terapia , Neumonía Viral/terapia , Sesgo , COVID-19 , Causas de Muerte , Infecciones por Coronavirus/mortalidad , Humanos , Inmunización Pasiva/efectos adversos , Inmunización Pasiva/métodos , Inmunización Pasiva/estadística & datos numéricos , Ensayos Clínicos Controlados no Aleatorios como Asunto/estadística & datos numéricos , Pandemias , Neumonía Viral/mortalidad , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Resultado del Tratamiento , Sueroterapia para COVID-19
15.
Cochrane Database Syst Rev ; 7: CD013600, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32648959

RESUMEN

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 4 June 2020. SELECTION CRITERIA: We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs.  MAIN RESULTS: This is the first living update of our review. We included 20 studies (1 RCT, 3 controlled NRSIs, 16 non-controlled NRSIs) with 5443 participants, of whom 5211 received convalescent plasma, and identified a further 98 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 50 are randomised. We did not identify any completed studies evaluating hyperimmune immunoglobulin. Overall risk of bias of included studies was high, due to study design, type of participants, and other previous or concurrent treatments. Effectiveness of convalescent plasma for people with COVID-19  We included results from four controlled studies (1 RCT (stopped early) with 103 participants, of whom 52 received convalescent plasma; and 3 controlled NRSIs with 236 participants, of whom 55 received convalescent plasma) to assess effectiveness of convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. All-cause mortality at hospital discharge (1 controlled NRSI, 21 participants) We are very uncertain whether convalescent plasma has any effect on all-cause mortality at hospital discharge (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.61 to 1.31; very low-certainty evidence). Time to death (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma prolongs time to death (RCT: hazard ratio (HR) 0.74, 95% CI 0.30 to 1.82; controlled NRSI: HR 0.46, 95% CI 0.22 to 0.96; very low-certainty evidence). Improvement of clinical symptoms, assessed by need for respiratory support (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma has any effect on improvement of clinical symptoms at seven days (RCT: RR 0.98, 95% CI 0.30 to 3.19), 14 days (RCT: RR 1.85, 95% CI 0.91 to 3.77; controlled NRSI: RR 1.08, 95% CI 0.91 to 1.29), and 28 days (RCT: RR 1.20, 95% CI 0.80 to 1.81; very low-certainty evidence). Quality of life No studies reported this outcome.  Safety of convalescent plasma for people with COVID-19 We included results from 1 RCT, 3 controlled NRSIs and 10 non-controlled NRSIs assessing safety of convalescent plasma. Reporting of adverse events and serious adverse events was variable. The controlled studies reported on adverse events and serious adverse events only in participants receiving convalescent plasma. The duration of follow-up varied. Some, but not all, studies included death as a serious adverse event.  Grade 3 or 4 adverse events (13 studies, 201 participants) The studies did not report the grade of adverse events. Thirteen studies (201 participants) reported on adverse events of possible grade 3 or 4 severity. The majority of these adverse events were allergic or respiratory events. We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence).  Serious adverse events (14 studies, 5201 participants)  Fourteen studies (5201 participants) reported on serious adverse events. The majority of participants were from one non-controlled NRSI (5000 participants), which reported only on serious adverse events limited to the first four hours after convalescent plasma transfusion. This study included death as a serious adverse event; they reported 15 deaths, four of which they classified as potentially, probably or definitely related to transfusion. Other serious adverse events reported in all studies were predominantly allergic or respiratory in nature, including anaphylaxis, transfusion-associated dyspnoea, and transfusion-related acute lung injury (TRALI). We are very uncertain whether or not convalescent plasma affects the number of serious adverse events. AUTHORS' CONCLUSIONS: We are very uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. For safety outcomes we also included non-controlled NRSIs. There was limited information regarding adverse events. Of the controlled studies, none reported on this outcome in the control group. There is only very low-certainty evidence for safety of convalescent plasma for COVID-19.  While major efforts to conduct research on COVID-19 are being made, problems with recruiting the anticipated number of participants into these studies are conceivable. The early termination of the first RCT investigating convalescent plasma, and the multitude of studies registered in the past months illustrate this. It is therefore necessary to critically assess the design of these registered studies, and well-designed studies should be prioritised. Other considerations for these studies are the need to report outcomes for all study arms in the same way, and the importance of maintaining comparability in terms of co-interventions administered in all study arms.  There are 98 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 50 are RCTs. This is the first living update of the review, and we will continue to update this review periodically. These updates may show different results to those reported here.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/terapia , Neumonía Viral/terapia , COVID-19 , Causas de Muerte , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/mortalidad , Terminación Anticipada de los Ensayos Clínicos , Humanos , Inmunización Pasiva/efectos adversos , Inmunización Pasiva/métodos , Inmunización Pasiva/mortalidad , Inmunización Pasiva/estadística & datos numéricos , Ensayos Clínicos Controlados no Aleatorios como Asunto/mortalidad , Ensayos Clínicos Controlados no Aleatorios como Asunto/estadística & datos numéricos , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/mortalidad , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Respiración Artificial/estadística & datos numéricos , SARS-CoV-2 , Sesgo de Selección , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Sueroterapia para COVID-19
16.
Cochrane Database Syst Rev ; 7: CD003149, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32614473

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Surgical interventions are more common in people with SCD, and occur at much younger ages than in the general population. Blood transfusions are frequently used prior to surgery and several regimens are used but there is no consensus over the best method or the necessity of transfusion in specific surgical cases. This is an update of a Cochrane Review. OBJECTIVES: To determine whether there is evidence that preoperative blood transfusion in people with SCD undergoing elective or emergency surgery reduces mortality and perioperative or sickle cell-related serious adverse events. To compare the effectiveness of different transfusion regimens (aggressive or conservative) if preoperative transfusions are indicated in people with SCD. SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 28 January 2020 We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 19 September 2019. SELECTION CRITERIA: All randomised controlled trials and quasi-randomised controlled trials comparing preoperative blood transfusion regimens to different regimens or no transfusion in people with SCD undergoing elective or emergency surgery. There was no restriction by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS: Three trials with 990 participants were eligible for inclusion in the review. There were no ongoing trials identified. These trials were conducted between 1988 and 2011. The majority of people included had haemoglobin (Hb) SS SCD. The majority of surgical procedures were considered low or intermediate risk for developing sickle cell-related complications. Aggressive versus simple red blood cell transfusions One trial (551 participants) compared an aggressive transfusion regimen (decreasing sickle haemoglobin to less than 30%) to a simple transfusion regimen (increasing haemoglobin to 100 g/L). This trial re-randomised participants and therefore quantitative analysis was only possible on two subsets of data: participants undergoing cholecystectomy (230 participants); and participants undergoing tonsillectomy or adenoidectomy surgeries (107 participants). Data were not combined as we do not know if any participant received both surgeries. Overall, the quality of the evidence was very low across different outcomes according to GRADE methodology. This was due to the trial being at high risk of bias primarily due to lack of blinding, indirectness and the outcome estimates being imprecise. Cholecystectomy subgroup results are reported in the abstract. Results for both subgroups were similar. There was no difference in all-cause mortality between people receiving aggressive transfusions and those receiving conservative transfusions. No deaths occurred in either subgroup. There were no differences between the aggressive transfusion group and conservative transfusion group in the number of people developing: • an acute chest syndrome, risk ratio (RR) 0.84 (95% confidence interval (CI) 0.38 to 1.84) (one trial, 230 participants, very low-quality evidence); • vaso-occlusive crisis, risk ratio 0.30 (95% CI 0.09 to 1.04) (one trial, 230 participants, very low quality evidence); • serious infection, risk ratio 1.75 (95% CI 0.59 to 5.18) (one trial, 230 participants, very low-quality evidence); • any perioperative complications, RR 0.75 (95% CI 0.36 to 1.55) (one trial, 230 participants, very low-quality evidence); • a transfusion-related complication, RR 1.85 (95% CI 0.89 to 3.88) (one trial, 230 participants, very low-quality evidence). Preoperative transfusion versus no preoperative transfusion Two trials (434 participants) compared a preoperative transfusion plus standard care to a group receiving standard care. Overall, the quality of the evidence was low to very low across different outcomes according to GRADE methodology. This was due to the trials being at high risk of bias due to lack of blinding, and outcome estimates being imprecise. One trial was stopped early because more people in the no transfusion arm developed an acute chest syndrome. There was no difference in all-cause mortality between people receiving preoperative transfusions and those receiving no preoperative transfusions (two trials, 434 participants, no deaths occurred). There was significant heterogeneity between the two trials in the number of people developing an acute chest syndrome, a meta-analysis was therefore not performed. One trial showed a reduced number of people developing acute chest syndrome between people receiving preoperative transfusions and those receiving no preoperative transfusions, risk ratio 0.11 (95% confidence interval 0.01 to 0.80) (65 participants), whereas the other trial did not, RR 4.81 (95% CI 0.23 to 99.61) (369 participants). There were no differences between the preoperative transfusion groups and the groups without preoperative transfusion in the number of people developing: • a vaso-occlusive crisis, Peto odds ratio (OR) 1.91 (95% confidence interval 0.61 to 6.04) (two trials, 434 participants, very low-quality evidence). • a serious infection, Peto OR 1.29 (95% CI 0.29 to 5.71) (two trials, 434 participants, very low-quality evidence); • any perioperative complications, RR 0.24 (95% CI 0.03 to 2.05) (one trial, 65 participants, low-quality evidence). There was an increase in the number of people developing circulatory overload in those receiving preoperative transfusions compared to those not receiving preoperative transfusions in one of the two trials, and no events were seen in the other trial (no meta-analysis performed). AUTHORS' CONCLUSIONS: There is insufficient evidence from randomised trials to determine whether conservative preoperative blood transfusion is as effective as aggressive preoperative blood transfusion in preventing sickle-related or surgery-related complications in people with HbSS disease. There is very low quality evidence that preoperative blood transfusion may prevent development of acute chest syndrome. Due to lack of evidence this review cannot comment on management for people with HbSC or HbSß+ disease or for those with high baseline haemoglobin concentrations.


Asunto(s)
Anemia de Células Falciformes/cirugía , Transfusión Sanguínea/métodos , Hemoglobina Falciforme , Cuidados Preoperatorios/métodos , Síndrome Torácico Agudo/etiología , Adenoidectomía , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/complicaciones , Colecistectomía/efectos adversos , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Tonsilectomía , Reacción a la Transfusión
17.
Cochrane Database Syst Rev ; 5: CD013600, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32406927

RESUMEN

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19. SEARCH METHODS: The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53  We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs). SELECTION CRITERIA: We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins. DATA COLLECTION AND ANALYSIS: We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events.  MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence).  Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy.  Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events  The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence).  AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.


Asunto(s)
Infecciones por Coronavirus , Inmunoglobulinas , Pacientes Internos , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/terapia , Cuidados Críticos , Enfermedad Crítica , Humanos , Inmunización Pasiva/efectos adversos , Inmunización Pasiva/métodos , Inmunoglobulinas/uso terapéutico , Neumonía Viral/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Sueroterapia para COVID-19
18.
Sci Rep ; 10(1): 6546, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300142

RESUMEN

Recent evidence suggests that e-cigarette users tend to change their puffing behaviors when using e-liquids with reduced nicotine concentrations by taking longer and more frequent puffs. Using puffing regimens modelled on puffing topography data from 19 experienced e-cigarette users who switched between 18 and 6 mg/mL e-liquids with and without power adjustments, differences in daily exposure to carbonyl compounds and estimated changes in cancer risk were assessed by production of aerosols generated using a smoking machine and analyzed using gas and liquid chromatography. Significant differences across conditions were found for formaldehyde and acetaldehyde (p < 0.01). Switching from a higher to a lower nicotine concentration was associated with greater exposure regardless of whether power settings were fixed or adjustable which is likely due to increased liquid consumption under lower nicotine concentration settings. Daily exposure for formaldehyde and acetaldehyde was higher for 17/19 participants when using low (6 mg/mL) compared with high (18 mg/mL) nicotine e-liquid concentration when power was fixed. When power adjustments were permitted, formaldehyde and acetaldehyde levels were higher respectively for 16/19 and 14/19 participants with the use of 6 compared with 18 mg/mL nicotine e-liquid.


Asunto(s)
Acetaldehído/análisis , Sistemas Electrónicos de Liberación de Nicotina , Formaldehído/análisis , Nicotina/análisis , Aerosoles/análisis , Carcinógenos/análisis , Humanos , Neoplasias/epidemiología , Factores de Riesgo
19.
Cochrane Database Syst Rev ; 4: CD012389, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32250453

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES: To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 14 November 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 07 October 2019. SELECTION CRITERIA: Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. MAIN RESULTS: We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention. Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents). The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence). No deaths were reported in either trial. Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence). Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial) Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence). We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence). The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence). Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence). Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS: We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD. Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises). In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions. Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention. All other evidence in this review is of very low-quality.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Antidrepanocíticos/uso terapéutico , Infarto Encefálico/prevención & control , Transfusión de Eritrocitos , Hidroxiurea/uso terapéutico , Flebotomía , Adolescente , Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/efectos adversos , Infarto Encefálico/etiología , Causas de Muerte , Niño , Cognición/fisiología , Humanos , Hidroxiurea/efectos adversos , Flebotomía/efectos adversos , Prevención Primaria/métodos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Prevención Secundaria/métodos , Accidente Cerebrovascular/prevención & control
20.
Addict Behav ; 101: 106177, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31753541

RESUMEN

INTRODUCTION: This study investigated the effects of the European Union Tobacco Products Directive [EU-TPD] Article 20 E-cigarette (EC) health warnings ("This product contains nicotine which is a highly addictive substance. [It is not recommended for non-smokers.]") and a comparative harm message ("Use of this product is much less harmful than smoking" [COMP]) on smokers' and non-smokers' perceptions and behavioural intentions. METHODS: 2495 UK residents (1283 smokers and 1212 non-smokers) self-reported perceived harm, addictiveness, EC effectiveness, social acceptability, and intentions to purchase and use EC, and in smokers, intentions to quit and intentions to use EC in future quit attempts. These were measured before and after exposure to EC images containing either the TPD, COMP, TPD + COMP or no message. RESULTS: Non-smokers had higher harm, addictiveness and lower social acceptability perceptions. TPD presence increased, whilst COMP decreased, harm and addictiveness perceptions in both groups. For smokers only, harm perceptions were lower following exposure to COMP alone vs. no message. For non-smokers the TPD increased harm perceptions vs. no message. There were no effects on social acceptability, EC effectiveness or use intentions. In smokers only, purchase and quit intentions were higher following exposure to the COMP alone. CONCLUSION: TPD messages may be effective smoking prevention tools, although the COMP message was more effective in reducing harm perceptions and increasing use intentions in smokers. That COMP did not increase use intentions in non-smokers suggest that such exposures may potentially act as an effective harm reduction tool without resulting in increased uptake among non-smokers.


Asunto(s)
Comunicación en Salud/métodos , Conocimientos, Actitudes y Práctica en Salud , No Fumadores/psicología , Etiquetado de Productos/métodos , Fumadores/psicología , Vapeo/psicología , Adolescente , Adulto , Sistemas Electrónicos de Liberación de Nicotina , Unión Europea , Femenino , Reducción del Daño , Conductas de Riesgo para la Salud , Humanos , Intención , Internet , Masculino , Persona de Mediana Edad , No Fumadores/estadística & datos numéricos , Etiquetado de Productos/estadística & datos numéricos , Fumadores/estadística & datos numéricos , Tabaquismo , Reino Unido , Vapeo/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...